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Experiments on convection of isolated masses of 
buoyant fluid 

By R. S .  SCORER 
Department of Meteorology, Imperial College, London 

(Received 15 Febvuary 1957) 

SUMMARY 
Isolated masses of buoyant fluid were released in a water 

tank. Their width, Zr, and the distance travelled, z, were measured 
as functions of time and were found to follow roughly the laws 

r = nx, w = c(gEr)1/2, 

where w is the vertical velocity, the mean buoyancy, and n and C 
are constants. These equations are predicted by dimensional 
analysis, assuming viscosity to be negligible, and the constants 
appear to be independent of the Reynolds number. It is found 
that C = 1.2, and n is in the neighbourhood of 4. 

Since the Froude number relating the buoyancy and inertia 
forces is the same as for isolated masses of buoyant air in the 
atmosphere, it is concluded that the constants will have the same 
value in this latter case. This is confirmed roughly by observation 
of cumulus cloud towers. 

Some of the characteristics of the motion observed in the 
experiments are described and comparison is made with vortex 
rings. 

1. THE NATURE OF THE PROBLEM 

It was desired to study motion produced in a fluid by buoyancy forces 
alone far from solid boundaries, in order to simulate buoyant convection 
in the atmosphere. From the behaviour of cumulus clouds and the 
experience of glider pilots over many years, it appears that convection, 
by which in this paper we mean convection produced by buoyancy forces, 
consists largely of more or less isolated masses of buoyant air rising into 
and mixing with their surroundings from intermittent sources on the ground 
or within clouds (see, for example, Ludlam & Scorer 1953 ; Welch, Welch & 
Irving 1955). 

For simplicity in the experiments, masses of heavy solutions were 
released from rest at the top of a water tank, and their growth downwards 
was observed photographically. If the volume at release is sufficiently 
small compared with its subsequent volume and no impulse is applied, 
the subsequent growth can be expected to be largely independent of the 
initial configuration of the substance released. In such case the factors 
determining the motion are so few that a very simple dimensional analysis 
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can be applied. The  method has been discussed by Batchelor (1954), 
and experiments of this kind have been carried out by Morton, Taylor & 
Turner (1956), and Scorer & Ronne (1956). The  motion is so complicated 
that no way was seen whereby the simplest dimensional analysis could be 
improved upon, and so the numerical coefficients relating a bulk dimension 
of the cloud of buoyant fluid to its buoyancy and vertical velocity were 
measured, with a view to applying them to the atmosphere. 

2. THE CHARACTERISTICS OF THERMALS ’ 
Following the usage of glider pilots, the buoyant masses of fluid are 

called thermals ’ herein. Over the advancing front of the thermal, mixing 
with the fluid ahead takes place. Inside and at the rear the fluid circulates 
rather as in a vortex ring, the motion being relatively smooth. As a result 
of the mixing the volume continuously grows, and, although the vertical 

MOTION RELATIVE I MOTION RELATIVE 

TO GROWING THERMAL1 TO A STATIONARY 

Figure 4. Approximate distribution of velocity in a typical thermal. The black area 
illustrates successive positions of a portion of the thermal, into which mixing 
has just occurred, beginning with the square. 

momentum steadily increases through action of the buoyancy force, the 
velocity decreases on account of the incorporation of exterior fluid. 
Examples are seen in figures 1, 2 and 3 (plates 1 and 2). The  pattern of 
motion is represented in figure 4. An idea of the exterior motion is gained 
from figure 3 (plate 2). 

The  thermals were released from a thin hemispherical copper cup 
(seen in figure 3, plate 2) pivoted about a horizontal axis, the level of the 
fluid inside being made the same as outside before release so as to avoid any 
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Figure 1. Series of pictures taken from cine film showing the growth of thermals in 
a water tank, made visible by white precipitate. (E:xperimental numbers 
106, 107, 111). No. 107 is unusually well formed. 

Figure 2. Pictures illustrating how a shape assumed early in the life of a thcrmal may persist while thc 
volume increases several times. This may be contrasted with no. 111 of figure 1 in which 
the protuberances are shed. Note the ' cauliflower ' nature of the surface. No shearing 
niotion is visible in these protuberances. 



R. S. Scorer, Experiments on convection of isolated masses of buoyant fluid, Plate 2. 

Figure 3. In each picture there are two exposures about sec apart. The first picture shows the free 
rate of sink of sonie slo\vly sinking particles. In the second and third pictures an idea of the 
velocity field outside the thermal can be gained. The  particles immediately in front of the thermal 
are displaced downwards as much as the faster sinking ones lower down, while those at the side arc 
in an upcurrent. Those that have disappeared have entered the advancing ' front ' of the thermal, 
not the rear. The  markings on the vertical rod are at 10 cm intervals. 

Figure 9. View of a thermal from above showing the hollowed-out rear. 
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initial impulse. T h e  cup was turned over quickly by hand, a n d a  negligible 
amount of motion was produced thereby. A dense white precipitate was 
used to make the buoyant fluid visible. Immediately after release the front 
surface of the thermal became covered with protuberances and the volume 
began to  increase. After the main mass escaped from the surface there 
was often a stem left behind. But this was very dilute and had negligible 
velocity in it, and was therefore assumed to contain a negligible fraction 
of the original material. This stem is thought to be a kind of ‘splash’ 
produced as the original material becomes rearranged into the configuration 
which it ultimately assumes. 

After the thermal 
has travelled about 1.5 diameters deceleration begins, and the measurements 
were concerned with the subsequent motion. 

I n  order that simple dimensional analysis should be applicable it is 
necessary to suppose that the thermal behaves as it if originated at a virtual 
point origin. Therefore, in order to allow location of this origin as closely 
as possible, the same cup (radius 3 in.) was used in nearly all the experiments 
and was filled to approximately the same depth each time. Thus at least 
the geometry of the initial conditions was approximately the same, and the 
origin was assumed to be in the same position in all these cases. Some other 
cases were included when they were susceptible of easy measurement, 
that is, when the thermals grew with reasonable symmetry. 

T h e  density differences were kept small, and were initially less than 
15%. First, the motion may be 
different according to whether the heavier fluid is inside or outside (downward 
or upward motion), and, second, it may vary according to the magnitude 
of the density differences. During the measured part of the thermals’ 
lives the density differences were mostly much less than 5%, and were 
reduced to around 0-1 yo towards the end of each experiment. 

Some thermals grew in a grossly asymmetrical manner. This is thought 
to be due to internal motions of the thermal, or occasionally in the tank, 
at the moment of release. These cases were rejected. 

Occasionally odd characteristics of shape seen in the early stages were 
retained almost throughout the observed life of a thermal (see figure 2, 
plate 1). I n  particular the angle subtended at the point of origin tended 
to remain the same, though it varied somewhat from thermal to thermal. 

The  motion consists initially of an acceleration. 

If this is not done two difficulties arise. 

3. SIMPLE DIMENSIONAL ANALYSIS 

T h e  only factors which can determine the velocities are the buoyancy 
forces and the size. The  local buoyancy force on unit mass of fluid is 

pi and po being the interior and exterior densities. The  density ratio B 
varies within the thermal because the dilution varies, and so the mean value 
-B v-ill be used, the distribiition of B being at present unknown. If r is 

F.M. 2 R  
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the radius of the largest horizontal section, the vertical velocity of the front 
of the thermal must then be of the form 

w2 = CzgBy (2) 
from dimensional considerations. C2 is a Froude number, being a ratio 
between inertia forces and buoyancy forces. 

The same formula can likewise be derived for the rise of a bubble of 
buoyant fluid which will not mix the surroundings. One example of this 
is the formula for the rise of bubbles of air through water, derived by 
Davies & Taylor (1950). There are some interesting differences. The 
buoyancy B in that case is virtually unity, but it is also constant, and for  
this reason it is not necessary to assume that B is small in the case of immiscible 
fluids. The drag is here due to the formation of a wake, so that the buoyant 
energy is converted into energy of turbulent motion of the surroundings ; 
in our case there is no wake, but the ‘ drag ’ is due to the continuous incorpora- 
tion of outside fluid. 

If x is the height of the foremost part of the thermal the two velocities 
dzldt and drldt are proportional to all other velocities, and so 

(3) x = nr 

if the origin of x is suitably chosen. This, the virtual origin, is at the apex 
of the cone swept out by the largest horizontal section. n has to be 
determined by experiment, and, like C, must be the same for all thermals, 
according to the assumptions made. Since only one representative velocity 
exists (which is equivalent to saying that there is no Froude number other 
than C2), the motion is similar at all stages in the life of a thermal and all 
thermals are similar. 

The volume V of the thermal, which is seen in the experiments to possess 
a clearly defined outline, is given by 

V = my3, (4) 
where m is another number to be determined by experiment. The total 
buoyancy of the thermal is constant, so that if suffix 0 denotes the values at 
the moment of release, when pi is uniform, 

g%r3 = gB, Yo. (5) 
In the experiments B, and Yo were measured before the release of the thermal. 

Writing w = dz/dt and integrating (2), we obtain 

kx2 = t ,  (6) 

where k = m1’2/2nC(gB, Vo)I‘2, (7) 
the origin of t being suitably chosen. 

The objective in the experiments was first to confirm the relation (6) 
for each thermal separately, and then (7) for a variety of values of gB, V,, 
the total weight (deficiency or excess) of the thermal. 



Experiments on convection of isolated masses of buoyant fluid 

4.  THE EFFECT OF VISCOSITY 

In  previous work on experiments and analysis of this kind (Batchelor 
1954; Morton, Taylor & Turner 1956), the motion has been described as 
‘fully turbulent’, and it has been assumed that the viscous forces are 
negligible in comparison with the inertia forces (including the eddy stresses) 
and the buoyancy forces. In the case of a conical plume from a maintained 
source of buoyancy, the fact that the plume is conical confirms the correctness. 
of this assumption because the Reynolds number varies up the plume. 
Furthermore, the motion is quite evidently turbulent throughout the volume 
of the plume. However, when small drops of coloured fluid are let fall in 
clear fluid they do not develop turbulent motion but retain a smooth outline. 
In  anindividual thermal from a source which is not maintained, the Reynolds 
number wr/v is equal to  1/2kv, which is the same throughout the life of a 
thermal ; so that it would in any case be expected to grow along a cone and 
retain a constant shape even if viscous forces were important. But the 
Reynolds number varies from one thermal to another, and so if (7) is 
confirmed we can assume that variations in Reynolds number make no 
difference and that viscous forces are negligible. 

In the case of thermals in cumulus clouds (see $ 7  below) the Reynolds 
number is about one thousand times greater than in these experiments. 
The constant C is roughly the same, and so the assumption that viscosity 
can be neglected is further justified. 

5. EXPERIMENTAL RESULTS 

The thermals were released into a tank with horizontal section 2 ft. x 4 ft. 
The thermals traversed the depth of 34 ft. in between 5 and 3C seconds 
according to the weight excess. 

The virtual origin was determined roughly by plotting r against z, 
extrapolating backwards, and taking x = 0 where r = 0. Variations in 
the position of the virtual origin by 3-4 cm had a negligible effect on the 
value of k obtained when x2 was plotted against t ,  and so the origin was 
taken to have the same position relative to the bottom point of the cup in 
all cases in which V, was nearly the same. In  a few cases V, was substantially 
different and for those the origin was determined individually. 

The crudeness with which the measurements have to be made must 
be mentioned. Successive outlines of four typical thermals are shown in 
figure 5. With them are the plots of z2 against t and the straight lines drawn 
to determine k. As expected, the points deviate from the line in the early 
part of the life while the thermal grows into its ultimate shape. Some of 
the thermals grew somewhat asymmetrically or irregularly but nevertheless 
yielded fairly definite values of k. 

No qualitative difference in the motion was evident when the motion 
was upwards. A fluorescent dye was used to make the thermal of methyl! 
alcohol visible, but the outline was less sharp than with the white precipitate. 
Only one upward moving case (no. 201) was measured, and this agrees. 
closely with the others. 
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The results are given in table 1. 
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Figure 5 .  Successive outlines of thermals traced from photographs. Beneath each 

is a graph of zz against t. (a) and (b) show fairly typical thermals; 106 (c) 
is an example of a very large value of n; 113 (d) shows a very asymmetrical 
thermal. 

In  figure 6 we have plotted ( VoBo)1/2 against K - l ,  and the straight line 
was drawn by eye through the origin to fit the points. There is no evident 
systematic deviation from this line and so viscosity can reasonably be 
assumed to be negligible. The straight line represents the relation 
k-I = 180(V0B0)1~2, i.e. (see (7)) 

2nC/m1'2 = 180g1/2 = 5.7. (8) 
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It was observed that n and m were not the same in all thermals, rough 
mean values being 

The variations in m did not appear to be related to other properties of the 
thermals, but some systematic variation in n was detected (see below). 
With these values we find 

m = 3 ,  n = 4 .  (9) 

V, BO)-lJ2k-l 

170 
210 
170 
220 
200 
200 
190 
190 
160 
160 
170 

170 
190 
170 
180 
150 
170 

- 

Experiment 
no. 

25 
110 
107 
112 
104 
102 
109 
24 
72 

111 
30 

106 
108 
118 
201 
117 
113 
105 

n 

3 *8 
4.8 
3 -7 
4.8 
4.1 
4.1 
4.2 
3.6 
3 *1 
3 .O 
3.3 
5 so 

3 *5 
3 a6 
4.8 
4.0 
2.9 
2.9 

(Vo Eo)”2 
CmWz 

6.63 
6.53 
6.31 
5.81 
5 -49 
4.97 
4.54 
4.45 
3.86 
3.45 
2.82 

2.44 
1.94 
1 a47 
1 *37 
1.26 
1 a 0 1  

- 

c= 1.2. 
* 

k-I 
cm2 sec-l 

1140 
1390 
1090 
1320 
1010 
1000 
880 
850 
625 
568 
490 
477 
406 
357 
250 
250 
200 
172 

87 
96 
89 

100 
99 
99 
93 

100 
91 
93 
93 

91 
100 
78 
90 
88 

100 

- 

Table 1. Measurements of total mass (deficiency or excess), k (giving the velocity 
as a function of height), and rate of widening n. 

6. VARIATIONS IN THE ANGLE OF THE ENVELOPING CONE 

We may attempt to take account of the variations of n in the following 
If the volume is expressed in terms of r2z,  and suffix 1 is used to denote way. 

values at a given time, then - .- 
Br2z = B, r; zl. 

w = Cn-l/2(g&)1/2 = Cn1i2(gB1 r: zl)l/2x-l. 

(1 1) 

(12) 

In the place of (Z),  we have 

Accordingly instead of having C as a constant we might have Cn1/2 as a 
constant, for now g B ,  r: z1 represents the weight (deficiency or excess) of the 
thermal. In  that case 

&m1P(gBo Vo)-1/2k-1n-1/2 = Cn1/2 = const. 

n = 0-00012( V, Bo)-1k-3. 

(13) 
To test this we have plotted (V, Bo)-1/2k-1 against n in figure 7 ,  and the 

curve drawn is part of the parabola represented by 

(14) 
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If the points lay on this curve it would imply that CnliZ was in fact constant. 
This appears to take some account of the variations in n, because over this 
series of experiments Cnl’z varies by only half as much as C itself (see table 1) ; 
we have no indication of the mechanism, except that if the thermal grows 
along a wider cone it travels more slowly at a given distance from the virtual 
origin, presumably because it has been more diluted. If m = 3, equations 
,(13) and (14) give 

5 

n 
i 

4 

3 

I I I 

2 4 C\rB.r 

Figurz 6. 

29’ I;. 
25. 

, 0 5 

100 200 
(V, Bo)tk-’- 

Figure 7. 

Figure 6. ( Vo Bo)1/2 plotted against k-l for the thermals enumerated in table 1. The 

Figure 7. The relationship n = 0.00012/V0 Bo k2, indicated by the curve drawn, is an 

straight line represents K - l  = 180 ( 170 BO)ll2. 

improvement upon the crude assumption that n is the same for all experiments. 

The tendency of a thermal to keep the same value of n throughout its 
life may be compared with the behaviour of the air bubbles of Davies and 
Taylor whose angular ‘ aperture ’ varied from one bubble to another. 

In  general, the wider thermals (smaller n) tended to leave more ‘ debris ’ 
behind and this may possibly account for their slower motion. The 
unusually slow one (1 13, shown in figure 5 ( d ) )  developed very asymmetrically 
and only part of it was in effect measured, which would imply that its 
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The  point derived from it lies below total buoyancy was overestimated. 
the line in figure 6. 

7. COMPARISON WITH ATMOSPHERIC THERMALS 

The  only published measurements of thermals in the atmosphere 
available for comparison are those given by Malkus & Scorer (1955). Thev 
measured the rate of rise of isolated cumulus towers, and found that early 
in their life on emerging from the parent cloud the relat‘ionship 

w2 = IgEr (16) 
was fairly well obeyed. The  cloud towers ceased to rise after ascending 
about 1.5 diameters, mainly because the buoyancy decreased to zero, or 
even changed sign, as the cloud droplets evaporated when the thermal was 
mixed with the surrounding dry air. I n  1.5 diameters the whole of the 
interior of the thermal would have been exposed to mixing. Inside the 
parent cloud there is no such evaporation, so that soon after emerging the 
motion would have been little affected by evaporation in the exterior shell 
of the thermal. 

In  the light of the present experiments and t$e nature of the mixing 
process it is probable that their estimates of buoyancy were too high; 
hence the value C = 8/9 obtained for clouds by comparing (2) and (16) 
would be expected to be a little below the true value. This agrees satis- 
factorily with the value of 1.2 obtained from the present experiments, and 
is certainly within experimental error. Of course not all differences should 
be attributed to such errors. It should be pointed out that the cloud 
thermals were ascending into stably stratified surroundings and were not 
increasing in size as they ascended, so that the terminal velocity may have 
differed on this account; but the difference cannot have been very great 
because the thermals were decelerating. The  measurement of Y in the case 
of the clouds was made soon after emergence from the parent cloud. 

Recently Ludlam & Saunders (1956) have made measurements of the 
vertical velocity of cumulus towers just as they began to emerge as thermals 
from the parent cloud. They did not attempt to measure the diameter but, 
having (12) in mind, expressed the size simply as distance above the ground. 
It cannot be much in error to assume that the virtual source is at the ground. 
Consequently it was possible to make an estimate of the ‘constant’ Cn-liZ 
in (12), and the mean value they obtained was roughly 0.5. This was based 
on the behaviour of the most rapidly rising thermals at any moment and 
not on the motion of many slower ones which could have originated at 
higher levels with unknown x .  The closeness of agreement with the value 
of 0.6 obtained in our experiments is certainly fortuitous in view of the 
roughness of the various estimates that are necessary, but it encourages the 
belief that no new dynamical process is involved even though the linear 
scale is much greater. Their calculations are not given in tlie paper referred 
to, other aspects of the observations being discussed there, but they will 
be submitted for publication in due course. 
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An attempt was made during the summer of 1956 by Miss Betsy 
Woodward to make the appropriate measurements in clear air thermals 
below cloud base in a Skylark I1 glider. The humidity and temperature 
inside and outside of a thermal were measured using a wet and dry thermistor 
out-of-balance resistance thermometer, the readings being spoken into. 
a wire recorder during flight. Spot readings had to be used to determine 
mean buoyancy of the thermal. The size of the thermal was estimated very 
roughly from the size of the turning circle which she could use during the 
ascent. The vertical velocity is not easily measured because it varies from 
one part of the thermal to another. I t  can be properly measured only if 
the glider has risen through the thermal to near the top, where, because of 
the decrease of vertical velocity and the outward radial component (which 
is equivalent to a downward velocity for a circling glider) the glider can rise 
only as fast as the whole thermal. 

Using the observed buoyancies, etc. (Woodward 1956), a verticalvelocity 
of 2 m/sec was deduced using a value of 1.2 for C and r = 160 m, B = ?%,, 
but since the uncertainties are so many it is neither surprising nor gratifying 
that the observed rate of rise of the glider when near the top of the thermal 
was only 1 m/sec. I t  is not considered profitable to attempt to explain 
away this discrepancy because there are too many different ways in which 
to do it easily. The observation is quoted because it shows that the model 
experiments again lead to an estimate of w of the correct order of magnitude. 

8. THE INTERIOR MOTION OF A THERMAL 

Miss Woodward has made the interior motion visible by releasing a 
transparent thermal containing white pellets about 5 mm in diameter 
balanced with pieces of fine wire attached to them so that they had a very 
small terminal velocity in water. The thermal was then illuminated by 
a flat beam of light about 3 cm thick, and the motion in the central vertical 
section of the thermal was photographed on 16 mm cine film. 

The positions of particles within the thermal in successive pictures were 
drawn by steadily reducing the picture of the thermal to a constant size 
on a screen as the motion proceeded. The motion during the whole life 
of the thermal was thus concentrated into one picture, on the assumption 
that the motion was similar at all stages. Isopleths of horizontal and vertical 
component of velocity obtained in this way are shown in figure 8. Speeds 
are expressed as multiples of the forward velocity of the front of the thermal. 
This figure is based on observation of only one thermal. 

It is seen that the velocity is a maximum in the centre, whereas in a vortex 
in which the vorticity is concentrated in a ring the velocity is a maximum 
at the inner surface of the ring and decreases towards the axis. 

9. COMPARISON WITH BUOYANT VORTEX RINGS 

In  a recent paper Turner (1957) has discussed the behaviour of buoyant 
Several years ago some glider fluid ejected in the form of a ring vortex. 
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pilots were accustomed to think of the thermals in which they soared as 
possessing a configuration like a ring vortex. We now see that there is 
much justification for this. One important difference is that a thermal 
is not possessed of any circulation, kinetic energy, or forward momentum 
at the moment of release. The circulation is generated gradually in the 
early stages of its existence. As Dr Batchelor noted to me in correspondence, 
the circulation round a thermal when it has achieved the final configuration 
is proportional to w z  and is therefore constant (see (2), (3) and (5)). In 

Figure 8. The distribution of velocity obtained by observing the motion of particles 
inside a liquid thermal. The values of the horizontal (left hand diagram) 
and vertical (right) velocities are expressed as multiples of the vertical velocity 
of the front of the thermal. 

the early stages there is a hydrostatic buoyancy force acting on a column of 
buoyant Auid up the centre and increasing the circulation. Later on much 
of this column is replaced by exterior fluid, as is seen in figure 9 (plate 2). 
If the rate of change of circulation is zero, then 

for a circuit passing through the centre of the thermal and round the outside, 
p' being the departure of the pressure from the hydrostatic value in the 
exterior fluid. If the fluid is buoyant along any part of the axis of the thermal 
the tendency to produce circulation must be counteracted by departure from 
the hydrostatic pressure due to the motion. Since the motion has been 
produced by the buoyancy forces we should expect the configuration of 
buoyancy to change to a distribution which does not continue to produce 
circulation ; this means reducing the depth of buoyant fluid up the axis of 
the thermal. 

In  Turner's vortex rings the circulation remained constant because the 
buoyant fluid did not extend to the centre. The initial impulse was of the 



594 R. S. Scorer 

order of 1500gm cmsec-1. The  buoyancy force was of the order of 
300 dynes and the impulse of a ring was increased by a factor of between 
2 and 10 during the period of observation. One would suspect that ulti- 
mately its motion would tend towards that of an isolated thermal as the initial 
impulse tended towards a small fraction of the total, but the rings did not 
reach this stage in his experiments. 

T h e  only constant characteristics of a thermal are its total weight 
(deficiency or excess), gEV, and the fluid density p.  Dimensional 
considerations show that its circulation K must therefore be given by 

It seems that if the circulation is less than this value the buoyancy forces 
create circulation. But if the circulation is much in excess of this value 
mixing towards the axis must be inhibited. The  vortex ring could only 
become a thermal if the circulation is reduced to the value appropriate to 
its total buoyancy according to (18). This might happen ultimately on 
account of viscosity, but then the viscous forces would interfere with the 
motion of the thermal. In  Turner’s case the total buoyancy of the rings 
was about 0.3 gm wt., which is much less than in the present experiments, 
in which it ranged from 1 to 40 gm wt., so that they are not immediately 
comparable. 

Among those who have participated in this work Miss Betsy Woodward 
,deserves special thanks for her assistance in performing the experiments 
and measuring the photographs. She has also done much pioneer work 
in the investigation of thermals in gliders. Her work is at present supported 
by the Munitalp Foundation. 
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ERRATUM 
T h e  first equation in the Summary should read as z = nr. 


